
Software Engineering

and Architecture

Pattern Catalog: Adapter 



Motivation

• LunaTown requirement

– The rate should correlate the phases of the moon !

• Double Alpha rates at full moon ☺, normal at new moon

– You must use the implementation bought from a 

consultancy company (closed source! final class)

• Challenge:

– The interface does not match ours 



--

• --: We have done almost all the steps

– : Encapsulate what varies (rate calculations)

– : We have the RateStrategy interface

• But we cannot  because the provided rate 

calculator does not implement RateStrategy!
• Of course, they do not know our company

• But we can  compose behavior even further to 

solve the problem



Solution

• Similar to our Decorator, but now ‘inside’ the pay station, 

and with a purpose of “converting/adapting stuff”

CS@AU Henrik Bærbak Christensen 4

Third Party
Object

PayStation 
Object

Adapting
Object



Analogy



Solution: Code wise

• I will put an intermediate object between the two, 

one that does the translation from one interface 

to the other:



Structure of our solution





Consequences

• Benefits

– Makes a client work with an otherwise incompatible 

object

– One adapter can adapt many type of adaptee’s 

namely all subclasses

• Liabilities

– Adaptation spectrum: from simple method name 

conversions to radically different interfaces

• Adapters for gui toolkits


